HARMONIC ANALYSIS ON EUCLIDEAN SPACES AND SOME OF ITS APPLICATIONS

INSTRUCTOR: AMOS NEVO

Fall semester, 2020-2021

1. Topics of the course

- (1) Basic theory of Fourier series on the circle: orthogonality, mean convergence, summability kernels, pointwise convergence
- (2) Basic theory of Fourier transform on the real line : L^1 -theory and L^2 theory, Plancherel's theorem and the inversion formula,
- (3) A more general perspective: unitary characters and Fourier transform on more general Abelian groups: from finite fields to Euclidean lattices to higher dimensional Euclidean spaces,
- (4) Fourier transform of the measure on the sphere, and the radial Euclidean convolution structure,
- (5) Diverse applications of Fourier Analysis (as time permits)
 - Ergodic theory on higher dimensional tori : Kronecker's theorem, spherical equidistribution,
 - The Poisson summation formula and lattice point counting problems,
 - The Heisenberg uncertainty principle for the Fourier transform.

Prerequisites. We will assume familiarity with the basic results of the courses on real functions / measure theory, introduction to functional analysis, and metric topology.

Time: Sunday 11:30-13:30, Wednesday 11:30-12:30

Grade: Final exam of 3 hours at the end of the semester.

2. Some references

- (1) E. M. Stein, Fourier Analysis an introduction.
- (2) Y. Katznelson, An Introduction to Harmonic Analysis.
- (3) E. M. Stein, Harmonic Analysis on Euclidean Spaces.
- (4) G. Folland, A Course in Abstract Harmonic Analysis.